Water Demand Prediction using Artificial Neural Networks and Support Vector Regression

نویسندگان

  • Ishmael S. Msiza
  • Fulufhelo Vincent Nelwamondo
  • Tshilidzi Marwala
چکیده

Computational Intelligence techniques have been proposed as an efficient tool for modeling and forecasting in recent years and in various applications. Water is a basic need and as a result, water supply entities have the responsibility to supply clean and safe water at the rate required by the consumer. It is therefore necessary to implement mechanisms and systems that can be employed to predict both short-term and long-term water demands. The increasingly growing field of computational intelligence techniques has been proposed as an efficient tool in the modeling of dynamic phenomena. The primary objective of this paper is to compare the efficiency of two computational intelligence techniques in water demand forecasting. The techniques under comparison are Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). In this study it was observed that ANNs perform significantly better than SVMs. This performance is measured against the generalization ability of the two techniques in water demand prediction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Prediction of WQI for Tha Chin River Using an Ensemble of Support Vector Regression and Complementary Neural Networks

This paper proposes an ensemble of support vector regression and complementary neural networks to predict the Water Quality Index (WQI) for Tha Chin River, Nakhonpathom, Thailand. The data set was collected during the year 2002-2007. Four parameters are used in the prediction which are dissolved oxygen, total solid, biological oxygen demand, and suspended solid. It is found that an ensemble of ...

متن کامل

Support vector regression for prediction of gas reservoirs permeability

Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...

متن کامل

Prediction of the pharmaceutical solubility in water and organic solvents via different soft computing models

Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008